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This article applies the realized generalized autoregressive conditional heteroskedasticity
(GARCH) model, which incorporates the GARCH model with realized volatility, to
quantile forecasts of financial returns, such as Value-at-Risk and expected shortfall.
Student’s t- and skewed Student’s t-distributions as well as normal distribution are used
for the return distribution. The main results for the S&P 500 stock index are: (i) the
realized GARCH model with the skewed Student’s t-distribution performs better than that
with the normal and Student’s t-distributions and the exponential GARCH model using
the daily returns only; and (ii) using the realized kernel to take account of microstructure
noise does not improve the performance.jere_548 68..80
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1. Introduction

Quantile forecasts of financial returns are important for financial risk management, such
as Value-at-Risk (VaR) and expected shortfall (ES). Few would dispute the fact that
financial volatility changes over time and hence it is important to model the dynamics of
volatility. One of the most widely used is the autoregressive conditional heteroskedastic-
ity (ARCH) family, including the ARCH model by Engle (1982), the generalized ARCH
(GARCH) model by Bollerslev (1986) and their extensions. Recently, realized volatility
has also attracted the attentions of financial econometricians as an accurate estimator of
volatility.

There are two problems in calculating realized volatility. First, realized volatility is
influenced by market microstructure noise, such as bid-ask spread and non-synchronous
trading (Campbell et al., 1997). There are some methods available for mitigating the
effect of microstructure noise on realized volatility (Zhang et al., 2005; Bandi and
Russell, 2008, 2011; Barndorff-Nielsen et al., 2008, 2011). Second, there are non-trading
hours, such as overnight and lunch-time, when we cannot obtain high-frequency returns.
Adding the squares of overnight returns may make realized volatility noisy. Hansen and
Lunde (2005a,b) propose a method for calculating realized volatility without overnight
returns.
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Hansen et al. (2011) have recently proposed to extend GARCH models incorporating
them with realized volatility. Their models, which are called realized GARCH models,
have certain advantages in quantile forecasts. First, they can adjust the bias of realized
volatility caused by microstructure noise and non-trading hours. Second, they enable us to
estimate the parameters of return and volatility equations simultaneously. Thus, we can
estimate the parameters of the return distribution jointly with the other parameters of the
model. Takahashi et al. (2009) have extended the stochastic volatility (SV) model in the
same direction. The estimation of the realized GARCH model is less time-consuming
than that of the realized SV model because the former can be estimated by the maximum
likelihood method while the latter requires more computer-intensive methods, such as
simulated maximum likelihood estimation via importance sampling and Bayesian esti-
mation via Markov chain Monte Carlo (MCMC). In this article, we apply the realized
GARCH model to quantile forecasts. GARCH models and realized volatility have already
been applied to quantile forecasts (Giot and Laurent, 2004; Watanabe and Sasaki, 2006;
Clements et al., 2008) but to the best of my knowledge this paper is the first to apply the
realized GARCH model to quantile forecasts.

In this article, we use the Student’s t- and skewed Student’s t-distributions as well as
the normal distribution for the return distribution because it is straightforward to estimate
the parameters in the Student’s t- and skewed Student’s t-distributions jointly with the
other parameters in the realized GARCH model by the maximum likelihood method. If
the realized GARCH model can adjust the bias of realized volatility caused by micro-
structure noise correctly, we need not take the bias into account in calculating realized
volatility. To analyze whether it is true, we use the plain realized volatility, which is the
sum of the squared intraday returns and the realized kernel proposed by Barndorff-
Nielsen et al. (2008) to take account of microstructure noise. For comparison, we also use
the exponential GARCH (EGARCH) model proposed by Nelson (1991), which is esti-
mated using daily returns only. The data we use are daily returns, realized volatility and
realized kernel of the S&P 500 stock index. The main results are: (i) the realized GARCH
model with the skewed Student’s t-distribution performs better than that with normal and
Student’s t-distributions and the EGARCH model using the daily returns only; and (ii) the
performance does not improve if the realized kernel, which takes account of microstruc-
ture noise, is used instead of the plain realized volatility, implying that the realized
GARCH model can adjust the bias caused by microstructure noise.

The article proceeds as follows. Section 2 reviews the realized GARCH model. Section
3 explains the method for forecasting the 1-day-ahead VaR and ES using the realized
GARCH model. Section 4 explains the data and summarizes the empirical results.
Conclusions and possible extensions are given in Section 5.

2. Realized GARCH model

We start with a brief review of the realized GARCH model. Daily return Rt is specified
as

R R z z i i dt t t t t t t t= ( ) + =−E I 1 , , . . .(0,1),ε ε σ ∼ (1)

where E(Rt|It-1) is the expectation of Rt conditional on the information up to day t - 1, σ t
2

is the volatility, and zt is the standardized error which follows an independent and
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identical distribution with mean 0 and variance 1. In what follows, we set E(Rt|It-1) = 0
because the null hypothesis of zero mean and that of no autocorrelations are not rejected
in our empirical application. The distribution of zt will be explained below.

For volatility specification, we use the simplest version of realized GARCH models:

ln ln ,σ ω β σ γt t tX2
1

2
1= + +− − (2)

X z z u u i i dt t t t t t u= + + + −( ) + ( )μ ϕ σ τ τ σln , . . . , ,2
1 2

2 21 0∼ N (3)

where Xt denotes the log of realized volatility.
Equation (2) specifies the dynamics of the true volatility σ t

2 . While GARCH models
specify σ t

2 as a function of the past values of σ t
2 and et (or zt), the realized GARCH

model specifies it as a function of the past values of σ t
2 and Xt. Equation (3) is called

the measurement equation, which relates the realized volatility to the true volatility. If
the realized volatility were an unbiased estimator of the true volatility, m and j would
be 0 and 1, respectively. Realized volatility, however, has a bias caused by microstruc-
ture noise and non-trading hours. For example, the New York Stock Exchange is open
only for 6.5 h in a day. Suppose that Rt and σ t

2 are return and volatility for a whole
day and RVt is realized volatility calculated using the intraday returns only when the
market is open. Then, we should expect m < 0 or j < 1. Equation (3) assumes that Xt,
i.e., the log of realized volatility, depends on the current value of zt. If t1 < 0, Xt

will be larger when zt < 0 than when zt > 0, which will make σ t +1
2 larger when

zt < 0 through (2) if g > 0. This is consistent with the well-known phenomenon in
stock markets of a negative correlation between today’s return and tomorrow’s
volatility.

The above model is the realzed GARCH (1, 1) model. The realized GARCH (p, q)
model replaces (2) with

ln lnσ ω β σ γt i t i
i

p

j t j
j

q

X2 2

1 1

= + +−
=

−
=

∑ ∑ . (4)

We also estimate the realized GARCH (1, 2) (2, 1) and (2, 2) models but the perfor-
mance of quantile forecasts does not change so much. Therefore, we explain the results
of realized GARCH (1, 1) model in what follows.

The distribution of zt is important in quantile forecasts. We use the standard normal,
standardized Student’s t- and standardized skewed Student’s t-distributions for the stan-
dardized error term zt in (1). The standardized version of the skewed Student’s
t-distribution introduced by Fernández and Steel (1998) has the pdf:
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where u > 2 and x > 0. g[·|u] is the pdf of standardized Student’s t-distribution with
degree of freedom u. Parameters m and s2 are the mean and the variance of the non-
standardized skewed Student’s t-distribution:
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where x and u determine the skewness and kurtosis, respectively. The skewness of zt is
zero if x = 1 and positive (negative) if x > (<)1. The kurtosis decreases as u increases.

The likelihood of the realized GARCH model can easily be evaluated as

L h R X X l X X X Rt t t t t
t

T

= ( ) ( )− −
=

∏ 1 1 1 1
1

, , , , ,. . . ,. . . (7)

where h(Rt|X1, . . . , Xt-1) is the pdf determined by the distribution of zt and l(Xt|X1, . . . ,
Xt-1, Rt) is the normal density with mean μ ϕ σ τ τ+ + + −( )ln t t tz z2

1 2
2 1 and variance σu

2 .
Given the initial values σ0

2 and X0, we can calculate σ t
2 by substituting (σ0

2 , X1, . . . ,
Xt-1) sequentially to (2). Hence, it is straightforward to evaluate h(Rt|X1, . . . , Xt-1). Given
Rt and st, we can calculate zt = Rt/st. Thus, it is also straightforward to evaluate
l(Xt|X1, . . . , Xt-1, Rt). We set the initial values lnσ0

2 and X0 equal to the unconditional
means (w + gm)/(1 - b - gj) and μ ϕ σ+ ln 0

2 , respectively. We estimate the degree of
freedom u for the Student’s t-distribution or (x, u) for the skewed Student’s t-distribution
jointly with the parameters (w, b, g ) in (2) and (m, j, t1, t2, σu

2 ) in (3) by the maximum
likelihood method.

3. VaR and expected shortfall

In this article, we concentrate on long position. Then, the 1-day-ahead forecast for the
VaR of the daily return Rt with probability a is defined as VaRt(a) satisfying

Pr ( ) .Rt t t<( ) =−VaR α αI 1 (8)

The sample size of daily returns and realized volatility used in our empirical analysis is
3263. Using 1500 daily returns and realized volatilities, we calculate the 1-day-ahead
forecasts (VaR1501(a), . . . , VaR3263(a)) as follows.

A1. Set i = 1.
A2. Estimate the parameters of the realized GARCH model using the sample

(Ri, . . . , R1499+i, Xi, . . . , X1499+i) by the maximum likelihood method.
A3. Set the parameters (w, b, g) in (2) equal to their estimates obtained in A2. Then,

calculate σ1500
2

+i by substituting σ1499
2

+i and X1499+i into (2).
A4. Set the parameters u or (u, x) of the distribution of z1500+i equal to their estimates in

A2 if the distribution is Student’s t or skewed Student’s t. Then, obtain z1500+i(a)
satisfying Pr(z1500+i < z1500+i(a)) = a depending on the distribution.

A5. Set VaR1500+i(a) = s1500+i z1500+i(a).
A6. Set i = i+1 and return to A1 if i < 1763 and end if i = 1763.

Using (VaR1501(a), . . . , VaR3263(a)) obtained by executing this algorithm, we calculate
the empirical failure rate. Let N be the number of times when the VaR is violated, i.e.,
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Rt < VaRt(a) for t = 1501, . . . , 3263. Then, the empirical failure rate is defined as N/1763.
Using the empirical failure rate, we apply the likelihood ratio (LR) test proposed by Kupiec
(1995) to test the null hypothesis of f = a, where f is the true failure rate. The LR statistic is:

LR = ⎛
⎝

⎞
⎠ −⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

− −( )
−

−2
1763

1
1763

2 (1 )
1763

1763ln ln
N NN N

N Nα α .. (9)

This LR statistic is asymptotically distributed as a c2(1) if the null hypothesis of f = a is
true.

The problem of VaR is that it only measures a quantile of the distribution and hence
ignores important information regarding the tails of the distribution beyond this quantile.
We also use expected shortfall (ES), which is defined as the conditional expectation of the
return given that it is beyond the VaR. The 1-day-ahead forecast for the ES of the daily
return Rt with probability a is defined as follows.

ES E VaRt t t t tR R( ) ( ) 1α α= <[ ]−, .I (10)

Using (VaR1501(a), . . . , VaR3263(a)), we calculate (ES1501(a), . . . , ES3263(a)) as follows.

B1. Set i = 1.
B2. Simulate 10000 sample for R1500+i using (1) given s1500+i and the distribution of z1500+i.
B3. Calculate ES1500+i(a) as the average of the sample violating the VaR, i.e.,

R1500+i < VaR1500+i(a).
B4. Set i = i + 1 and return to B1 if i < 1763 and end if i = 1763.

To backtest the predicted ES value with probability a, we use the measure proposed by
Embrechts et al. (2005). The standard backtesting measure for the ES estimates is

D
x

t
t

1
( )

1

( )
( )( ) ,α

α
δ α

κ α
=

∈
∑ (11)

where dt(a) = Rt - ESt(a), x(a) is the number of days for which a violation of VaRt(a),
i.e., Rt < VaRt(a) occurs and k(a) is the set of days for which it happens.

Its weakness is that it depends strongly on the VaR estimates without adequately
reflecting the correctness of these values. To correct for this, it is combined with the
following measure, where the empirical a-quantile of dt(a) is used in place of the VAR
estimates.

D
y

t
t

2
( )

1

( )
( )( ) ,α

α
δ α

τ α
=

∈
∑ (12)

where y(a) is the number of days for which dt(a) is less than its a-quantile and t(a) is
the set of days for which it happens.

The Embrechts et al. (2005) measure is given by

D D D( ) ( ) ( ) 21 2α α α= +( ) . (13)

A good estimation of ES will lead to a low value of D(a).
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4. Empirical application

4.1 Data

We use daily data on returns and realized volatilities of the S&P 500 stock index. The
sample period is 3 January 1996–27 February 2009. These data are obtained from the
Oxford–Man Institute’s Realized Library (Heber et al., 2009), where we can download
two types of realized volatilities. One is the plain RV, which is the sum of the squared
intraday returns. We call it RV in what follows. The other is the realized kernel (RK)
calculated using the method proposed by Barndorff-Nielsen et al. (2008) to take account
of microstructure noise. If the bias of realized volatility caused by microstructure noise
can be adjusted by the realized GARCH model, RK will not improve the performance of
VaR and ES. To analyze whether this is true, we use the both RV and RK.

Figure 1 plots these data and Table 1 summarizes the descriptive statistics for the full
sample. Table 1a shows the descriptive statistics of daily returns (%). The mean is not
significantly different from 0. LB(10) is the Ljung-Box statistic adjusted for heterosk-
edasticity following Diebold (1988) to test the null hypothesis of no autocorrelations up
to 10 lags. According to this statistic, the null hypothesis is not rejected at the 10%
significance level. Thus, we set E(Rt|It-1) = 0 in (1). The skewness is significantly below
0 and the kurtosis is significantly above 3, indicating the well-known phenomenon that
the distribution of the daily return is leptokurtic. The Jarque-Bera (JB) statistic using both
skewness and kurtosis also rejects the null hypothesis of normality at the 1% significance
level.

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

0

10
Return

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

25

50

Realized Volatilty

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

25

50

Realized Kernel

FIGURE 1. Daily rerurns, realized volatility and realized kernel of the S&P 500 stock index
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Table 1b,c summarizes the descriptive statistics of log-RV and log-RK. The values of
skewness, kurtosis and JB statistic indicate that the distributions of log-RV and log-RK
are non-normal. Thus, it might be better to assume a non-normal distribution also for ut

in (3), but we leave this for future analysis. LB(10) is so large that the null hypothesis of
no autocorrelation is rejected, which is consistent with the phenomenon called volatility
clustering.

4.2 Estimation results of the realized GARCH model

As explained in Section 3, we estimate the realized GARCH model using the 1500 daily
returns and RV (RK) and then forecast the 1-day-ahead VaR and ES given the parameter
estimates. Table 2 summarizes the estimation results of the realized GARCH model with
the normal, Student’s t- and skewed Student’s t-distributions for zt using the first 1500
returns and RV (RK). The sample period is from 3 January 1996–4 February 2002.

Table 2a shows the results using RV. Judging from the likelihood values, the skewed
Student’s t-distribution fits the data best. x in the skewed Student’s t-distribution is
significantly below 1, indicating a negative skewness of zt. Figure 2 plots the pdf of the
standard normal, standardized Student’s t- and standardized skewed Student’s
t-distributions where the parameters (u, x) in the skewed Student’s t and u in the
Student’s t are set equal to their estimates in Table 2a. The parameter estimates of the
realized GARCH model do not depend on the distribution of zt so much. The persis-
tence in volatility can be measured by the estimates of b + gj, which is about 0.95 no
matter which distribution is used for zt. This result shows a well-known phenomenon of
a high persistence in volatility. The estimate of m is significantly below 0 and that of
j is significantly above 1 at the 1% significance level, showing that the log-RV is a
biased estimator of the true log-volatility. The estimate of t1 is significantly below 0,
which is consistent with a well-known phenomenon in stock markets of a negative
correlation between today’s return and tomorrow’s volatility (Nelson, 1991). Figure 3
plots the news impact curve, where the horizontal axis is zt-1 and the vertical axis is st.

TABLE 1
Descriptive statistics for the full sample

Mean
Standard
deviation Skewness Kurtosis JB LB(10)

(a) Daily returns (%)
0.005 1.313 -0.258 11.025 8791.47 16.27
(0.023) (0.043) (0.086)

(b) Log-realized volatility
-0.657 0.993 0.556 3.825 260.69 6339.12
(0.017) (0.043) (0.086)

(c) Log-realized kernel
-0.621 1.001 0.530 3.772 233.76 6475.19
(0.018) (0.043) (0.086)

Notes: Sample period: 3 January 1996–27 February 2009. Sample size: 3263. The numbers in parentheses are
standard errors. JB is the Jarque-Bera statistic to test the null hypothesis of normality. LB(10) is the Ljung-Box
statistic adjusted for heteroskedasticity following Diebold (1988) to test the null hypothesis of no autocorre-
lations up to 10 lags.
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FIGURE 2. Estimated pdf of zt

*Parameters u in the Student’s t-distribution and (u, x) in the skewed Student’s t-distribution are set equal
to their estimates in Table 2a.

TABLE 2
Estimation results of realized GARCH model for the first 1500 sample

w b g m j t1 t2 su u x

(a) RV
Normal (Log-likelihood = -3440.53)

0.258 0.587 0.275 -0.896 1.305 -0.198 0.058 0.518
(0.024) (0.031) (0.022) (0.051) (0.076) (0.014) (0.007) (0.009)

Student’s t (Log-likelihood = -3411.36)
0.261 0.586 0.288 -0.870 1.252 -0.197 0.056 0.518 8.138

(0.028) (0.031) (0.025) (0.061) (0.082) (0.014) (0.007) (0.009) (1.466)

Skewed Student’s t (Log-likelihood = -3397.67)
0.268 0.590 0.287 -0.920 1.245 -0.197 0.079 0.516 8.625 0.826

(0.028) (0.030) (0.024) (0.061) (0.076) (0.014) (0.009) (0.009) (1.670) (0.029)

(b) RK
Normal (Log-likelihood = -3453.27)

0.240 0.589 0.272 -0.843 1.315 -0.197 0.056 0.522
(0.023) (0.031) (0.022) (0.051) (0.077) (0.014) (0.007) (0.010)

Student’s t (Log-likelihood = -3424.16)
0.242 0.588 0.284 -0.817 1.262 -0.196 0.054 0.523 8.142

(0.027) (0.031) (0.025) (0.062) (0.084) (0.015) (0.007) (0.010) (1.481)

Skewed Student’s t (Log-likelihood = -3410.54)
0.249 0.592 0.284 -0.868 1.258 -0.197 0.077 0.520 8.608 0.826

(0.027) (0.030) (0.024) (0.062) (0.078) (0.014) (0.009) (0.010) (1.670) (0.030)

Notes: Sample period: 3 January 1996–24 February 2002. Sample size: 1500. The numbers in parentheses are
standard errors.
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Table 2b summarizes the estimation results of the realized GARCH model using RK.
The results in Table 2b are almost the same as those in Table 2a.

For comparison, we also calculate VaR and ES using the EGARCH model proposed by
Nelson (1991):

ln ln .σ ω φ σ ω θ γt t t t tz z E z2
1

2
1 1 1= + −( ) + + − ( )(− − − − (14)

We use the standard normal, the standardized Student’s t and the standardized skewed
Student’s t for the distribution of zt. Table 3 summarizes the estimation results of the
EGARCH model. Judging from the log-likelihood values, the skewed Student’s
t-distribution fits the data best also in the EGARCH model.

4.3 Comparison using VaR and ES

Table 4a,b shows the empirical failure rates and the P-values for the Kupiec LR test for
a = 1%, 5% and 10%, where RG(RV), RG(RK) and EG denote the realized GARCH
model with RV, the realized GARCH model with RK and the EGARCH model, and n,
t and skt represent the normal, Student’s t- and skewed Student’s t-distributions for zt.
As can be seen from Table 4b, the null hypothesis of f = a is accepted for all models
when a = 5%, 10%. When a = 1%, the null hypothesis is rejected for RG(RV)-n,
RG(RK)-n, EG-n and EG-t at the 5% significance level. Thus, we may conclude that it
is not good to assume the normal distribution for zt no matter which model is used. We
cannot conclude which model performs best among RG(RV), RG(RK) and EG because

−5 −4 −3 −2 −1 0 1 2 3 4 5

1.1

1.2

1.3

1.4

1.5

FIGURE 3. News impact curve
*The horizontal axis is zt-1 and the vertical axis is st. Parameters are set equal to their estimates in the

skewed Studen’s t-distribution in Table 2a.
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the null hypothesis is accepted for all models and a if we use the skewed Student’s
t-distribution.

In Table 5, we show the D(a) values defined by (13). As can be seen from this table,
RG(RV)-skt gives the lowest values for a = 5%, 1%. For a = 10%, RG(RV)-t gives the
lowest value but it is not so much different from that of RG(RV)-skt. Hence, for the
1-day-ahead ES prediction, the realized GARCH model with the skewed Student’s
t-distribution is superior to that with the other distributions and the EGARCH model.

TABLE 3
Estimation results of EGARCH model for the first 1500 sample

w f q g u x

Normal (Log-likelihood = -2289.65)
0.338 0.948 -0.165 0.101

(0.067) (0.011) (0.019) (0.020)

Student’s t (Log-likelihood = -2267.98)
0.280 0.954 -0.158 0.099 8.730

(0.079) (0.011) (0.022) (0.022) (1.695)

Skewed Student’s t (Log-likelihood = -2261.16)
0.297 0.955 -0.155 0.104 9.178 0.871

(0.081) (0.010) (0.02) (0.022) (1.929) (0.032)

Notes: Sample period: 3 January 1996–24 February 2002. Sample size: 1500. The numbers in parentheses are
standard errors.

TABLE 4
Results for Value-at-Risk

a 10% 5% 1%

(a) Empirical failure rate
RG(RV)-n 10.323 5.332 1.645
RG(RV)-t 10.720 5.672 1.134
RG(RV)-skt 10.267 4.594 0.908
RG(RK)-n 10.380 5.615 1.645
RG(RK)-t 11.004 5.729 1.248
RG(RK)-skt 10.323 4.651 0.908
EG-n 10.040 5.445 1.872
EG-t 10.777 5.559 1.531
EG-skt 10.607 5.218 1.248

(b) P-values from the LR test
RG(RV)-n 0.652 0.527 0.013*
RG(RV)-t 0.318 0.204 0.579
RG(RV)-skt 0.710 0.429 0.692
RG(RK)-n 0.597 0.245 0.013*
RG(RK)-t 0.166 0.170 0.314
RG(RK)-skt 0.652 0.497 0.692
EG-n 0.956 0.397 0.001**
EG-t 0.282 0.290 0.038*
EG-skt 0.400 0.676 0.314

Notes: The numbers in the table are P-values from the Kupiec (1995) LR test calculated from the LR statistic
(9). * and ** indicate that the null hypothesis of f = a is rejected at the 5% and 1% significance levels,
respectively.
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RG(RV)-skt and RG(RK)-skt perform better than EG-skt for a = 5%, 1%, indicating
that using RV or RK improves the performance. The performance of RG(RV)-skt is
almost the same as that of RG(RK)-skt for a = 10%, 5% and the former is superior to
the latter for a = 1%, showing that the realized GARCH model can adjust the bias
caused by the microstructure noise and hence we need not take the bias into account
in calculating realized volatility.

5. Conclusions and extensions

This article applies the realized GARCH model to quantile forecasts, such as VaR and
ES. Using the daily returns, RV and RK of the S&P 500 stock index, we find that the
realized GARCH model with the skewed Student’s t-distribution performs better than that
with the normal and Student’s t-distributions and the EGARCH model using the daily
returns only and that the performance does not improve if the RK, which takes account
of microstructure noise, is used instead of the plain RV.

Several extensions are possible. First, we used the normal, Student’s t- and skewed
Student’s t-distributions for zt. The normal inverse Gaussian (NIG) and generalized
hyperbolic (GH) skew Student’s t-distributions have recently been applied to financial
returns (Forsberg and Bollerslev, 2002; Aas and Haff, 2006). It is, however, difficult to
estimate the parameters in these distributions by the maximum likelihood method (Aas
and Haff, 2006). The joint estimation of the parameters in these distributions and the
parameters in the realized GARCH model may be challenging. Using the empirical
distribution of the standardized residuals or extreme value theory might improve the
performance (Mancini and Trojani, 2011). Second, it is worthwhile using the other
realized measures of volatility, such as the realized range (Christensen and Podolskij,
2007; Martens and van Dijk, 2007) and the realized volatility from which significant
jumps are removed (Barndorff-Nielsen and Shephard, 2004; Andersen et al., 2007).
Third, the realized SV model proposed by Takahashi et al. (2009) should also be
applied to quantile forecasts, for example, using Bayesian estimation via MCMC. This
method is time-consuming but enables us to estimate the parameters in the distribution
and in the model jointly even if GH skew Student’s t-distribution is used for zt (Naka-
jima and Omori, 2011). It also makes it possible to estimate the parameters and

TABLE 5
Results for expected shortfall

a 10% 5% 1%

RG(RV)-n 0.092 0.168 0.437
RG(RV)-t 0.070* 0.089 0.237
RG(RV)-skt 0.077 0.030* 0.087*
RG(RK)-n 0.110 0.174 0.443
RG(RK)-t 0.072 0.091 0.223
RG(RK)-skt 0.076 0.031 0.120
EG-n 0.136 0.240 0.456
EG-t 0.082 0.140 0.287
EG-skt 0.071 0.064 0.211

Notes: The numbers in the table are the value of D(a) defined by (13). *indicates the lowest value for each a.
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forecast VaR and ES jointly by sampling the parameters and the forecasts of VaR and
ES jointly from their posterior distribution.

Final version accepted 28 September 2011.
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