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Abstract

Recent portfolio-choice, asset-pricing, value-at-risk, and option-valuation models highlight the
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kurtosis for which a density exists and show that the generalized Student-t distribution spans a
large domain in the maximal set. We use this distribution to model innovations of a GARCH
type model, where parameters are conditional. After demonstrating that an autoregressive spec-
i5cation of the parameters may yield spurious results, we estimate and test restrictions of the
model, for a set of daily stock-index and foreign-exchange returns. The estimation is implemented
as a constrained optimization via a sequential quadratic programming algorithm. Adequacy tests
demonstrate the importance of a time-varying distribution for the innovations. In almost all series,
we 5nd time dependency of the asymmetry parameter, whereas the degree-of-freedom parameter
is generally found to be constant over time. We also provide evidence that skewness is strongly
persistent, but kurtosis is much less so. A simulation validates our estimations and we conjecture
that normality holds for the estimates. In a cross-section setting, we also document covariability
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1. Introduction

This paper investigates the existence and persistence of conditional skewness and
kurtosis of various 5nancial series taken at the daily frequency. To do so, we build
on Hansen (1994), who proposes a GARCH model, where residuals are modeled as
a generalized Student-t distribution. 1 The generalized t distribution is asymmetric and
allows fat-tailedness. We express skewness and kurtosis of Hansen’s GARCH model as
a function of the parameters of the generalized t distribution. These functions character-
ize the conditional evolution of skewness and kurtosis for a given dynamic speci5cation
of the underlying parameters.
A further theoretical contribution is the characterization, conditional on kurtosis being

5nite, of the largest possible domain of skewness and kurtosis for which a density
exists with a zero mean and a unit variance. We achieve this characterization using
results from the so-called Hamburger (1920) problem. These results go back to Stieltjes
(1894) and are also related to the little Hausdor9 (1921a, b) problem. Conditional on
the assumption that kurtosis and, hence, skewness exist, we show that the moments of
the generalized t distribution are within the maximal range of skewness and kurtosis. An
advantage of using the generalized t distribution is that moments may become in5nite.
As a consequence, it is possible to determine those periods when higher moments cease
to exist.
In 5nancial applications it may be necessary to simulate from a generalized Student

t. We show how such a simulation can be implemented. We use this random number
generator to establish normality of the estimates of a well speci5ed model.
The model is inspired by Engle (1982) and Bollerslev (1986) in the way volatility

is described. For the generalized t distribution, the asymmetry and the fat-tailness pa-
rameters are modeled as a function of lagged innovations. Given that the generalized
t distribution is de5ned over a certain range of the parameters only, it is necessary to
impose some constraints on the dynamic speci5cation. We discuss in detail possible
speci5cations of the parameters. Eventually, we settle for an autoregressive structure
where parameters are constrained via a logistic map. The estimations are made us-
ing a recent sophisticated sequential quadratic optimization algorithm implemented in
SNOPT, developed by Gill et al. (1997, 1999).
Given the way the parameters appear in this type of model, we show that an au-

toregressive speci5cation of the parameters may yield spurious persistence. Therefore,
it may seem that series have persistence in skewness and kurtosis where there is none.
We present an estimation strategy that takes care of this diIculty. In a numerical
simulation, we show that the potential of misinterpretation is huge.
We estimate the model for 5ve stock-index returns and six foreign-exchange returns

sampled at a daily frequency. The foreign-exchange series start on July 26, 1991, the
stock indices on August 23, 1971. All series end on May 14, 1999. We investigate the
existence and persistence of moments in a time-series context and the comovements of
moments in a cross-section context.

1 More recent contributions are by Premaratne and Bera (1999) who build on the Pearson type IV family,
and by Rockinger and Jondeau (2002) who use entropy densities.
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Our 5ndings are of importance for the various strands of 5nance literature which
emphasize the importance of moments beyond the second one. Within a Capital Asset
Pricing Model, interest in skewness and kurtosis goes back to the theoretical work by
Rubinstein (1973) and its 5rst empirical implementation by Kraus and Litzenberger
(1976). Further work in that area is by Friend and Wester5eld (1980); Barone-Adesi
(1985); Sears and Wei (1985, 1988), and more recently by Tan (1991); Fang and
Lai (1997), Korkie et al. (1997); Kan and Zhou (1999), Harvey and Siddique (1999,
2000). For emerging countries, Hwang and Satchell (1999) model risk premia using
higher moments. With our model and estimation technique, it is possible to extend
these models to conditional versions.
Another strand of literature, initiated by Mandelbrot (1963) and Fama (1963), sug-

gests that the density of asset returns has tails such that moments beyond the 5rst one
do not exist. Even though most empirical work, e.g., of Loretan and Phillips (1994),
shows that moments up to the third exist in unconditional returns, there remains the
issue of the existence of conditional moments. This issue may be easily addressed
with our model. It involves a set of parameters which are related to skewness and
kurtosis. We estimate our model under the constraints that a density exists. The data
then decides if, furthermore, skewness and even kurtosis exist. We show that skewness
appears to exist most of the time, but not necessarily kurtosis. Our work is, therefore,
also related to extreme value theory. An advantage over extreme value theory is that
we are able to make a statement concerning the entire distribution rather than only one
for the tails.
We show that all foreign-exchange series obey a similar dynamics of the asymmetry

parameter, whereas the fat-tailedness parameter is found to be constant. For stock-index
returns, various types of dynamics emerge. Some series behave similarly as exchange
rates. Other series allow for a complex, often diIcult to interpret, dynamic of the
fat-tailedness parameter. These results suggest that most of the tail-fatness of 5nancial
data is generated by large repeatedly occurring events of a given sign. The dynamics
of skewness is straightforward to interpret, whereas the one of kurtosis is diIcult to
understand. This 5nding suggests that theoretical models should be able to incorpo-
rate conditional skewness and kurtosis. They should also be able to deal with in5nite
kurtosis.
We also perform tests of adequacy of our selected models and show that the retained

model provides a better 5t of returns than models where higher moments are held
constant. The gain in 5t may be signi5cant.
The structure of this paper is as follows. In Section 2, we present the generalized

t distribution and we compute the 5rst four moments of this distribution. We relate
the issue of existence of moments to the little Hausdor9 problem and discuss
the set of skewness-kurtosis pairs which are generated by the generalized t distri-
bution. Next, we describe our general model and we indicate how such a model
may be estimated. In Section 3, we present the data. In Section 4, we discuss the
parameter estimates and address several other speci5cation issues. In Section 5, we
consider the existence and persistence of conditional skewness and kurtosis. Then,
we consider in a multi-country setting the covariability between markets of moments
beyond volatility. In Section 6, we conclude with directions for further
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research. Analytical results and a Monte-Carlo experiment are reported in the
appendix.

2. A model for conditional skewness and kurtosis

2.1. The generalized t distribution

Our model builds on the GARCH model of Engle (1982) and Bollerslev (1986). 2

Within this class of models, it is well known that residuals are non-normal. This
result has led to the introduction of fat-tailed distributions. Nelson (1991) considers
the generalized error distribution. Bollerslev and Wooldridge (1992) consider the case
of a Student-t distribution. 3 Engle and Gonzalez-Rivera (1991) model the residual
distribution non-parametrically. Even though these contributions recognize the fact that
errors have fat tails, they do not render the tails time varying, i.e., the parameters of
the error distribution are assumed to be constant over time.
Hansen (1994) is the 5rst author to propose a model which allows for conditional

higher moments. He achieves this by introducing a generalization of the Student-t
distribution where asymmetries may occur, while maintaining the assumption of a zero
mean and unit variance. By assuming that parameters are dependent on past realizations,
he shows that parameters, and thus higher moments, may be made time varying. 4 In
the 5nance literature, Harvey and Siddique (1999) introduce a non-central Student-t
distribution. This distribution allows the modelization of skewness, but does not allow
for a separate variation of skewness and kurtosis. Premaratne and Bera (1999) use the
Pearson family of distributions.
The density of Hansen’s generalized t distribution (GT) is de5ned by

gt(z|�; �) =




bc

(
1 +

1
�− 2

(
bz + a
1− �

)2)−(�+1)=2

if z ¡− a=b;

bc

(
1 +

1
�− 2

(
bz + a
1 + �

)2)−(�+1)=2

if z¿− a=b;

(1)

where

a ≡ 4�c
�− 2
�− 1

; b2 ≡ 1 + 3�2 − a2; c ≡ �((�+ 1)=2)√

(�− 2)�(�=2)

:

If a random variable Z has the density gt(z|�; �), we will write Z ∼ GT (z|�; �).
Inspection of the various formulae reveals that this density is de5ned for 2¡�¡∞
and −1¡�¡ 1. Furthermore, this density encompasses a large set of conventional
densities. For instance, if �=0, Hansen’s distribution reduces to the traditional Student-t

2 The literature concerning GARCH models is huge. Several reviews of the literature are available, i.e.,
Bollerslev et al. (1992), Bera and Higgins (1993), and Bollerslev et al. (1994).

3 For a de5nition of the traditional Student-t distribution, see, for instance, Mood et al. (1982).
4 Hansen does not discuss the link between parameters and higher moments.
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Fig. 1. Shape of the generalized t distribution.

distribution. We recall that the traditional Student-t distribution is not skewed. If in
addition �=∞, the Student-t distribution collapses to a normal density. Fig. 1 displays
various densities obtained for di9erent values of � and �. We notice that � controls
skewness: If � is positive, the probability mass concentrates in the right tail.
It is well known that the traditional Student-t distribution with � degrees of freedom

allows the existence of all moments up to the �th. Therefore, given the restriction
�¿ 2, Hansen’s distribution is well de5ned and its second moment exists. The higher
moments are not given directly by the parameter �, but we were able to obtain formulae
for these moments.
We show in Appendix A that, if Z ∼ GT (z|�; �), then Z has zero mean and unit vari-

ance. Furthermore, in the appendix, we derive the formulae for skewness and kurtosis.
Introducing the notations

m2 = 1 + 3�2;

m3 = 16c�(1 + �2)
(�− 2)2

(�− 1)(�− 3)
if �¿ 3;

m4 = 3
�− 2
�− 4

(1 + 10�2 + 5�4) if �¿ 4;

we obtain that

E[Z3] = [m3 − 3am2 + 2a3]=b3; (2)

E[Z4] = [m4 − 4am3 + 6a2m2 − 3a4]=b4: (3)
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Fig. 2. Skewness surface for values of � and �.

We recall that skewness and kurtosis are de5ned as

S[Z] = E
[
(Z − E[Z])3

(Var[Z])3=2

]
; K[Z] = E

[
(Z − E[Z])4

(Var[Z])2

]
:

Hence, since Z has zero mean and unit variance, we directly obtain for skewness
S[Z] = E[Z3], and for kurtosis K[Z] = E[Z4].

We notice, at this stage, that the density and the various moments do not exist for
all parameters. Given the way asymmetry is introduced, we must have −1¡�¡ 1.
The density g exists if �¿ 2. From Eq. (2), it follows that skewness exists if �¿ 3
and, from Eq. (3), we obtain that kurtosis is de5ned if �¿ 4. 5

We de5ne as D the domain (�; �)∈ ]2;+∞[× ]− 1; 1[. Given these restrictions on
the underlying parameters, it is clear that the range of skewness and kurtosis will also
be restricted to a certain domain. Figs. 2 and 3 trace the skewness and kurtosis surface
for given values of � and �. Focusing on Fig. 2, we notice that, as � approaches 3,
skewness becomes very large. On the other hand, when one slightly increases �, say

5 In empirical applications, we will only impose that �¿ 2 and let the data decide for itself if for a given
time period a given moment exists.
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Fig. 3. Kurtosis surface for values of � and �.

Fig. 4. Skewness for various values of �.

beyond 4, the surface strongly levels out. When we consider kurtosis, displayed in
Fig. 3, we verify a degeneracy as � reaches its boundary value of 4. To get a better
feel for the range of skewness as � varies between −1 and 1, we trace in Fig. 4 various
curves corresponding to selected values of �. For the case where � takes the value 4.5,
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i.e. kurtosis exists, we notice that skewness is rather restricted ranging between −3
and 3. If � decreases, kurtosis ceases to exist and skewness may take larger and larger
values before it also ceases to exist. Symmetrically, if � increases, as the tails of the
density become thinner, the range of skewness becomes smaller.
This last picture illustrates the fact that, for a given level of kurtosis, only a 5nite

range of skewness exists. This feature raises the question of existence of a density for
given moments. We address this question in the next section.

2.2. The moment problem

The question of the existence of a non-decreasing function � for a sequence of
non-central moments �j, j = 1; : : : ; M; such that

�j =
∫ u

l
zj d�(z) (4)

has already been addressed in the functional analysis literature. There are essentially
two approaches. The 5rst approach is discussed in Widder (1946). The case l=0 and
u=∞ has been investigated by Stieltjes (1894) and was motivated by a problem issued
from physics. 6 The case l=0 and u=1 has been studied by Hausdor9 (1921a, b), and is
called the little Hausdor9 problem. The situation of interest for us, l=−∞ and u=+∞,
has been studied by Hamburger (1920). A second approach to the moment problem is
discussed in Baker and Graves-Morris (1996) and involves PadOe approximants.
Concerning the uniqueness of a solution to Eq. (4), Widder (1946) provides an

example that demonstrates the multiplicity of a solution. Next, there is the question of
conditions that must be satis5ed by �j to ensure existence of a solution to Eq. (4).
The answer is that the sequence �j must be positive de5nite (Widder, 1946, p. 134,
Theorem 12.a). This means that the following number and sequence of determinants
must satisfy

�0¿ 0

∣∣∣∣∣
�0 �1

�1 �2

∣∣∣∣∣¿ 0;

∣∣∣∣∣∣∣∣
�0 �1 �2

�1 �2 �3

�2 �3 �4

∣∣∣∣∣∣∣∣
¿ 0; : : : :

In particular, for the four-moment problem, with �0=1; �1=0; and �2=1, this implies
the following relation between skewness �3 and kurtosis �4:

�2
3 ¡�4 − 1 with �4 ¿ 0: (5)

This relation con5rms that, for a given level of kurtosis, only a 5nite range of skewness
may be spanned.
Fig. 5 displays the skewness–kurtosis boundary ensuring the existence of a density.

The curve ABC corresponds do the theoretical domain of maximal size (5). The curve
DEF corresponds to the domain of skewness and kurtosis, which is attainable with a

6 The 5rst moment appears as a center of gravity and the second moment is interpreted as the inertia.
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Fig. 5. Skewness–kurtosis boundary for the generalized t distribution.

generalized t distribution, assuming �¿ 2. 7 We notice that the kurtosis is bounded
from below by 3, indicating that the generalized t distribution does not allow tails to
be thinner than those of the normal distribution.
We will call E the domain corresponding to DEF in Fig. 5, i.e., that is spanned by

skewness and kurtosis if both moments exist. We notice that the relation between D
and E is not bijective. In particular, those points that are located in D but where �¡ 4
have no counterpart in E. The logic is that there are points in D where skewness or
kurtosis cease to exist, whereas in E skewness and kurtosis are 5nite by construction.
It is only when one reduces the domain D to ]4;+∞[ × ] − 1; 1[ that the relation is
bijective.
Given these conditions on the parameters of the generalized t distribution, to ensure

existence of moments, we now consider our general model.

2.3. A model for time-varying skewness and kurtosis

Let rt , for t = 1; : : : ; T , be realizations of a variable of interest. For exchange-rate
and stock-market data, this variable will be a log-return. 8 We assume that

rt = �t + yt; (6)

yt = �tzt ; (7)

7 To construct the curve DEF, we notice that � intervenes as a square in the expression of kurtosis. On the
other hand, the skewness expression is linear in �. Therefore, skewness will be symmetric in that changing
� to −� will change S into −S. As a consequence, we only construct the upper bound of DEF by taking
a 5ne grid for � and by selecting a boundary value for �, such as 0.999. The lower bound is obtained
symmetrically.

8 If St is the value of the index on date t, we de5ne rt = 100 ln(St=St−1).
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Table 1
Possible speci5cations of the model. g represents the logistic map

Model M1:

{
�t = a1 + b+1 y+

t−1 + b−1 y−
t−1;

�t = a2 + b+2 y+
t−1 + b−2 y−

t−1:

Model M2:




�̃t = a1 + b+1 y+
t−1 + b−1 y−

t−1;

�̃t = a2 + b+2 y+
t−1 + b−2 y−

t−1;

�t = g[2;30[(�̃t); �t = g]−1;1[(�̃t):

Model M3:

{
�t = a1 + b+1 y+

t−1 + b−1 y−
t−1 + c1�t−1;

�t = a2 + b+2 y+
t−1 + b−2 y−

t−1 + c2�t−1:

Model M4:




�̃t = a1 + b+1 y+
t−1 + b−1 y−

t−1 + c1�̃t−1;

�̃t = a2 + b+2 y+
t−1 + b−2 y−

t−1 + c2�̃t−1;

�t = g[2;30[(�̃t); �t = g]−1;1[(�̃t):

Model M5:




�̃3t = a1 + b1y3
t−1;

�̃4t = a2 + b2y4
t−1;

(�3t ; �4t) = G(�̃3t ; �̃4t);

(�t ; �t) = F−1(�3t ; �4t):

Model M6:




�̃3t = a1 + b1y3
t−1 + c1�̃3t−1;

�̃4t = a2 + b2y4
t−1 + c2�̃4t−1;

(�3t ; �4t) = G(�̃3t ; �̃4t);

(�t ; �t) = F−1(�3t ; �4t):

�2
t = a0 + b+0 (y

+
t−1)

2 + b−0 (y
−
t−1)

2 + c0�2
t−1; (8)

zt ∼ GT (zt |�t ; �t): (9)

Eq. (6) decomposes the return at time t into a conditional mean, �t , and an innovation,
yt . In Eq. (7), we de5ne this innovation as the product between conditional volatility,
�t , and a residual, zt . Eq. (8) determines the dynamics of volatility. We use the notation
y+

t = max(yt; 0) and y−
t = max(−yt; 0). Such a speci5cation has been suggested by

Glosten et al. (1993), and by ZakoQRan (1994). In Eq. (9), we specify that residuals
follow a generalized t distribution with time-varying parameters (�t ; �t).
We now wish to discuss various possible speci5cations for the dynamics of �t and

�t . In Table 1, we display several speci5cations that could be used to describe �t

and �t . Many other speci5cations could be given, involving further lags or less linear
relations. We emphasize these speci5cations, since they will highlight the diIculties
that may be encountered. We assume that the coeIcients are such that stability of the
dynamics is guaranteed.
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Model M1 speci5es directly �t and �t as functions of past positive and negative
realizations. The advantage of this speci5cation is that no further non-linear map is
required to obtain a description of the parameters. A drawback of this speci5cation is
that its estimation is cumbersome since the constraints 2¡�t and −1¡�t ¡ 1 must
be numerically imposed. Furthermore, nothing guarantees, out of sample, that �t and
�t will be well de5ned. Ad-hoc techniques, such as truncation at the boundaries could
be devised for forecasting purposes.
Model M2 speci5es a dynamic for unconstrained �̃t and �̃t . These unrestricted pa-

rameters get mapped into the authorized domain D via a logistic map. Many of the
drawbacks of model M1 disappear. However, one consequence is that the impact of
extreme realizations gets dampened since the logistic map tends to Satten the response
of variables located in its tails.
Model M3 speci5es parameters �t and �t as an auto-regressive structure. Such a

speci5cation su9ers from a severe drawback. For data with suIcient variability, as the
sample increases, the model is likely to degenerate to a solution where b+2 =b−2 =0. To
understand why this is so, consider the simpler speci5cation �t=a2+b2yt−1+c2�t−1; �0
given. For |c2|¡ 1, we may write as an approximation, if t is suIciently large, that

�t = a2=(1− c2) + b2
∞∑
s=0

cs
2yt−1−s:

From this expression, we see that �t has mean a2=(1 − c2) and variance
b22 Var[

∑∞
s=0 c

s
2yt−1−s]. This shows that the restriction −1¡�t ¡ 1 will only be satis-

5ed if b2 =0, otherwise, with some probability the constraint will be violated for some
observation. 9

Model M4 is similar to M3, yet, it uses a non-linear map to constrain the parameters
to D. The model is estimable, yet, some care must be taken in the interpretation of
the estimates. For instance, if one estimates M4 and 5nds, for instance, that b+1 and
b−1 are not statistically di9erent from 0, in this case the model reduces to

�̃t = a1 + c1�̃t−1:

At this stage, it may even be that c1 is statistically signi5cant. This may lead to the
conclusion that there is persistence in the �̃t . Such a conclusion would be erroneous
however. Indeed, if actual observations yt−1 do not matter, then, starting from some
initial �̃0; the series of �̃t will quickly converge to its stationary level given by

�̃∗ = a1=(1− c1):

In other words, a model where one would have estimated �̃t=�̃∗ (with b+1 =b−1 =c1=0)
could not be distinguished from the one obtained earlier. This implies that there exists
an entire class of parameters (a1; c1), all satisfying (1 − c1)�̃

∗ = a1, for which the
model’s characteristics are indistinguishable. The algorithm converges to one solution
at random. In the appendix we present results from a Monte-Carlo simulation showing

9 We veri5ed this result by implementing model M2 with the constraints 2¡�t and −1¡�t ¡ 1 imposed
numerically. The algorithm either converged to a solution with b2 = 0 or aborted with a message hinting to
a degeneracy of the problem.
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that in this case the null hypothesis c1 = 0 can be rejected as often as 50% of the
estimations. To avoid this type of spurious 5nding, it is recommended to estimate M2
before M4 and to verify that past observations a9ect �̃t or �̃t . In no way should one
trust in an estimation where c1 or c2 is statistically signi5cant, yet, the parameters on
the lagged innovations are not statistically signi5cant.
We found that a further diagnostic to detect this behavior consists in changing the

value of �̃1 or of the initial value of the parameters in the numerical estimation. If the
algorithm converges to signi5cantly di9erent values, then care should be taken.
In speci5cation M5, the third and fourth non-central moments, �3t and �4t , get spec-

i5ed using actual observations. Leaving aside the observation made by Korkie et al.
(1997) that a speci5cation involving standardized innovations leads to less 5ndings of
spurious persistence in the third non-central moment, for the model to be well de5ned;
it must be that �3t and �4t belong to the domain E. This implies a potentially highly
non-linear map, G that maps some unrestricted �̃3t and �̃4t into E. Furthermore, in
order to obtain �t and �t from �3t and �4t , it is necessary to invert a highly non-linear
map that we call F in the table. Even though such an inversion could be done in the-
ory, it will lead to a slow algorithm and also to a rather unstable estimation since the
analytic computation of gradients may not be feasible. Last, with such a speci5cation,
it is implicitly assumed that skewness and kurtosis are 5nite at each point of time.
This observation is at odds with results from extreme value theory. These observations
suggest that modeling directly skewness and kurtosis may be eventually the right thing
to do. However, given the many diIculties this estimation involves, we will settle for
a less complex parameterization.
Model 6 presents the same diIculties as M5 with the added complication discussed

already for model M3, in that one may 5nd spurious dependence of skewness due to
a lack of signi5cant b1 or b2 estimates.
Given these theoretical considerations, we decided to build an estimation strategy

where we build up from an unconditional model to model M4, estimating model M2
as an intermediated step.

2.4. Monte-Carlo experiments

It may be necessary to simulate returns that are distributed following the above
presented model. Such simulations may be useful for the purpose of validating the
estimation of the model. 10 In another application, trajectories of prices could be simu-
lated. These trajectories could be further used to stress testing 5nancial models. In this
section, we show how to simulate data distributed as a generalized Student-t.
First, we recall that the conventional Student-t distribution is de5ned by

f(x) =
�((n+ 1)=2)

�(n=2)
1√

n

(
1 +

x2

n

)−(n+1)=2

;

10 In Appendix C, we show that if the estimated model is well speci5ed, the conventional asymptotic
normality of the maximum-likelihood estimator holds.
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where n is the degree-of-freedom parameter. Numerical evaluation of the cumulative
distribution function (cdf) of the conventional Student-t is well known. Procedures are
provided in most software packages, and in particular in Fortran, which is the language
used in this study. We write the cdf of a Student-t with n degrees of freedom as

An(t) =
∫ t

−∞
f(x) dx:

The following proposition presents the cdf of the generalized t distribution.

Proposition 1. De,ning D(t) = Pr[Z ¡ t]; where Z follows the density (1); yields

D(t) =




(1− �)A�

(
bt + a
1− �

√
�

�− 2

)
if t ¡− a=b;

(1 + �)A�

(
bt + a
1 + �

√
�

�− 2

)
− � if t¿− a=b:

(10)

Proof. Suppose that t ¡− a=b. Given the de5nition of D(t); we have

D(t) =
∫ t

−∞
bc

(
1 +

1
�− 2

(
bz + a
1− �

)2)−(�+1)=2

dz

= (1− �)
∫ (bt+a)=(1−�)

−∞

�((�+ 1)=2)
�(�=2)

1√

(�− 2)

(
1 +

u2

�− 2

)−(�+1)=2

du

= (1− �)A�

(
bt + a
1− �

√
�

�− 2

)
:

The second equation follows from a change of variable involving u=(bz+ a)=(1− �).
The last equation follows from a trivial change of variable. In the case where t=−a=b;
we obtain that

D(t) =
(1− �)

2
:

For t ¿− a=b; we have

D(t) = D(−a=b) +
∫ t

−a=b
bc

(
1 +

1
�− 2

(
bz + a
1− �

)2)−(�+1)=2

dz:

The result now follows from a computation analogous to the case t ¡− a=b.

It is easy to verify that D(−∞) = 0, and D(∞) = 1.
This proposition shows how the cdf of the generalized Student-t can be evalu-

ated using readily available procedures. In order to simulate data from the generalized
Student-t, we use the inverse cdf technique. This requires inversion of Eq. (10). Setting
u = D(t), that will be distributed, in a simulation, as an uniform variate with support
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[0; 1], we obtain that

t =




1
b

[
(1− �)

√
�− 2

�
A−1

�

(
u

1− �

)
− a

]
if u¡

1− �
2

;

1
b

[
(1 + �)

√
�− 2

�
A−1

�

(
u + �
1 + �

)
− a

]
if u¿

1− �
2

:

To obtain a generalized Student-t distributed realization, it suIces to simulate u uni-
form and to use these formulae to compute t. At this stage, we have gathered all the
necessary theoretical tools. In the next section, we present the results of the empirical
work.

3. Data

3.1. The data set

In this study, we investigate the time-series behavior of 5ve stock indices and of six
foreign exchange rates. We use the following symbols for stock indices: S&P, NIK,
DAX, CAC, and FTSE for the S&P 500, the Nikkei, the Deutsche Aktien Index, the
CAC40, and the FTSE 100, respectively.
For exchange rates, we use DM–US, YEN–US, UK–US, FF–US for the amount of

Deutsche Mark, Japanese Yen, British Pound, and French Franc necessary to purchase
one US dollar. Furthermore, we use SFR–DM for the Swiss Franc-Deutsche Mark
and CAN–US for the Canadian dollar to US dollar. The stock-market indices have
been obtained from Datastream. They cover the period from August 23, 1971 to May
14, 1999 for a total of 7169 observations. All these indices have been used in other
studies, such as Jorion (1995). The exchange rates have been provided by a large
bank. They cover the period from July 26, 1991 to May 14, 1999, representing 1969
observations. 11

3.2. Descriptive statistics

Table 2 displays several sample statistics for stock indices and for exchange rates.
We notice that the standard deviation of exchange rates tends to be smaller than for
indices. For the stock indices, we 5nd a negative skewness for the S&P, DAX, and
CAC, indicating the presence of sharp drops in stock prices. Exchange rates display
a wide range of possible skewness, which ranges from −1:3889 for the YEN–US to
0.3868 for the UK–US. This translates the fact that, over the sample considered, on
certain occasions, the Yen appreciated sharply whereas the pound depreciated. Skewness

11 We did not do any data-snooping in this study. That is we did not try to select a particular sample
length to obtain nicer empirical results. Also, we did not drop any series for which our model may not
have worked. The inclusion of little investigated data sets such as the Swiss Franc–Deutsche Mark or the
Canadian dollar–US dollar exchange rate was motivated by the question whether less liquid markets are
subject to di9erent dynamics.
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is signi5cant for all series except for the DM–US and the FF–US. Given the e9ort to
align both currencies, we can expect the two series to have a similar behavior. Turning
to excess kurtosis, we 5nd that all countries have a strongly signi5cant statistic. This
result translates the fact that exchange rates and stock returns have fatter tails than
the ones of the normal distribution. Considering the Jarque–Bera statistic, which is
distributed as a '2 with two degrees of freedom, we reject normality for all series.
The Engle-test statistics with lags 1 and 5, obtained by regressing squared returns

on one lagged, respectively, 5ve lagged, squared returns is distributed as a '2 with the
degree of freedom equal to the number of lags. The strong signi5cance of the statistics
reveals the presence of heteroskedasticity in the data.
The Box–Ljung statistic, corrected for heteroskedasticity, tests for the existence of

serial correlation of order 5 or 10. Even though we are able to detect serial correlation,
the coeIcient of correlation is always small. 12

4. Estimation results

4.1. Searching for an optimal model

In Tables 3 and 4, we report the results of the various estimations. Table 3 focuses on
stock markets, whereas Table 4 considers exchange rates. We started by estimating the
GARCH model with asymmetry in the volatility speci5cation and with an unconditional
generalized t distribution.
As a 5rst step, we examine for all series and models the speci5cation of volatility. A

likelihood-ratio test of the restriction b+0 = b−0 could be rejected for all stock markets.
For these markets we uniformly 5nd that negative past innovations have a larger impact
on subsequent volatility than positive innovations. This observation has been well doc-
umented, e.g., Nelson (1991), Campbell and Hentschel (1992), Glosten et al. (1993),
ZakoQRan (1994) Sentana (1995), and may be explained by Black’s (1976) leverage
hypothesis. Considering exchange rates, we notice that, except for the SFR–DM, no
asymmetric impact of news exists. For the SFR–DM, a rather thinly traded currency,
we 5nd that a decrease of the exchange rate (an appreciation of the SFR with respect
to the DM) is followed by an increase of volatility. 13

Next, following the logic described in Section 2.3, we estimate a model using Eq.
(8) for volatility and

�̃t = a1 + b+1 y+
t−1 + b−1 y−

t−1; (11)

�̃t = a2 + b+2 y+
t−1 + b−2 y−

t−1; (12)

�t = g]2;+30](�̃t); �t = g]−1;1[(�̃t): (13)

g represents the logistic map.

12 We 5ltered the data with an AR(5) auto-regression and estimated various speci5cations with and without
the 5ltering. Since the estimations, involving 5ltered or non-5ltered data, yielded similar results, we decided
to report the results obtained for non-5ltered data only.
13 An explanation of this 5nding without further considering cross-country interest-rate di9erentials would

be hazardous and will not be attempted here.
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Inspection of the coeIcients b+2 and b−2 , followed by a formal test, revealed that
the hypothesis b+2 =−b−2 could not be rejected for any of the series. This implies that,
subsequent to positive innovations, the asymmetry parameter tends to be larger and that
subsequent to negative returns, the �t parameter becomes smaller. As a consequence,
we re-estimated for all series the model with equation (12) replaced by

�̃t = a2 + b2yt−1:

4.2. Discussion of the estimations for stock-index returns

At this stage, rather than estimating all sorts of models and test their restrictions, we
adopted a strategy taking care of spurious persistence. This leads us to a discussion
where we have to consider each series one by one since no single pattern emerges.
For the S&P series, we notice in column 2, that the parameter b2 is not signi5cant.

This means that an autoregressive speci5cation of �̃t could be misleading. However,
since b+1 is statistically signi5cant, taking the value −0:5457, we estimate an autore-
gressive speci5cation for �̃t .
As column 3 shows, the parameter �t displays some persistence since c1 takes the

value 0.5568. Given that b+1 and b−1 remain signi5cant, we conclude that this persistence
will not be spurious. We further estimated a model where we used an autoregressive
speci5cation of �t and a dynamic speci5cation �̃t = a2 + b2yt−1. We found that b2
became signi5cant. This led us to estimate a model with autoregressive speci5cation
of �̃t . The result of this estimation is presented in column 4. We notice that both the
degree of freedom, �̃t , and the asymmetry parameter, �̃t , are autoregressive.

Next, we turn to the FTSE. Inspection of column 6 of Table 3 shows that neither
b+1 nor b−1 are statistically signi5cant. However, since b2 is statistically signi5cant, we
estimated an autoregressive speci5cation for �̃t . The result is reported in column 7. We
further veri5ed that b+1 and b−1 remained non signi5cant, even when we introduced the
autoregressive speci5cation of �̃t . Thus, for the FTSE a model with constant �̃t and
autoregressive �̃t appears optimal such as presented in column 7.
For the DAX, the model presented in column 9 hints at a possible autoregressive

speci5cation for �̃t . In column 10, we present the estimation where we allow for
an autoregressive speci5cation for �̃t , keeping �̃t constant. We extended that model
allowing for a dynamic and even autoregressive speci5cation of �̃t . The parameters
were close to the ones reported in column 11 and non-signi5cant. As a consequence,
we will use for the DAX as best speci5cation the one presented in column 10.
To illustrate what we mean with spurious dependence, let us again consider the

estimation of the DAX. As an exercise we estimated the dynamics of �̃t and �̃t as an
autoregressive process. We obtained

�̃t =−1:775 − 0:062 y+
t−1 − 0:153 y−

t−1 − 0:885 �̃+t−1;

(0:465) (0:218) (0:121) (0:083)

�̃t =−0:0162 + 0:069 yt−1 + 0:726 �̃t−1:

(0:011) (0:023) (0:115)
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Inspection of the parameters reported in column 10 of Table 3 shows that the dynamics
of �̃t is similar to the one reported previously. When we compare the new parameters of
the �̃t dynamics with the ones displayed in column 11, we 5nd that the estimates behave
rather erratically. Interestingly, now we even 5nd that c1, with a value of −0:885, is
statistically signi5cant. In such a situation, one might have concluded that �̃t reverts
strongly. Since b+1 and b−1 are not statistically signi5cant, however, this 5nding turns
out to be spurious.
The discussion concerning the CAC is short. Estimation of the model of column

13 and comparison of the log-likelihoods of the models presented in columns 12 and
13 show that a dynamic speci5cation of �̃t and �̃t does not improve the 5t. In other
words, the CAC displays no time-varying skewness and kurtosis of a nature that can
be captured by this model.
For the Nikkei, we report the estimates for the basic models in columns 14 and

15 of Table 3. There is potentially no dynamics in �̃t and �̃t . As a consequence, we
re-estimate the model with a possible autoregressive speci5cation for �̃t . As column 16
displays, the parameter associated with �̃t−1 turns out to be non signi5cant. We did a
similar estimation with an autoregressive structure for �̃t , yet, we retain as preferred
speci5cation the one presented in column 15.
Broadly speaking, we obtain that the degree of freedom, �̃t , can be considered as

constant over time for the FTSE, the DAX, and the CAC. It is found to be signi5cantly
persistent for the S&P only. As far as the asymmetry parameter, �̃t , is concerned, it
is signi5cantly persistent (with an autoregressive parameter as high as 0.7) for the
S&P, the FTSE, and the DAX. Parameter b2, associated with yt−1, is positive in most
countries and close to 0.07, indicating that a positive (negative) shock yield an increase
(decrease) in the degree of freedom.
Note that we investigated the estimation of the model over subsamples. Our 5nding

is that, since extreme events that drive skewness and kurtosis become rarer, standard
errors increase and make it more diIcult to identify the dynamics of the parameters.
We found, however, that the estimates remained similar.

4.3. Discussion of estimations for foreign-exchange returns

Following the strategy described previously, in order to obtain reasonable estimates,
it is necessary to start from a speci5cation where it is known that past innovations
matter. For the DM–US$ pair, inspection of column 2 of Table 4, shows that an
autoregressive speci5cation for �̃t does not seem appropriate but possibly for �̃t .

Column 3 displays the coeIcients obtained for an autoregressive speci5cation of
�̃t . We notice that �̃t may indeed be modeled as an autoregressive process since the
parameter c2 takes the value of 0.638 with a standard error of 0.1462.
The result for the pairs YEN–US, UK–US and FF–US are very similar to the ones

just reported. We found no dynamics at the level of �̃t , but the autoregressive compo-
nent for �̃t turns out to be signi5cant. For theses series, we always obtain a positive
c2 coeIcient with a value between 0.31 and 0.85.
The results for the SFR–DM, reported in column 14, are disappointing. We cannot

reject the model with constant skewness and kurtosis.
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The results for CAN–US, reported in column 14, reveal that �̃t is best taken as
a constant. In column 17 we show that the parameter c2 is not signi5cant. Hence,
for this series an autoregressive speci5cation of �̃t does not seem correct. Eventually,
we settled for a speci5cation (not reported) where b+1 = b−1 = 0, and a2 and b2 were
estimated.
Broadly speaking, the degree of freedom, �̃t , is constant over time for all foreign-

exchange returns. By contrast, the asymmetry parameter, �̃t , is signi5cantly persistent
(with an autoregressive parameter ranging between 0.3 and 0.85), except for CAN–US.
Parameter b2 is positive in most countries, between 0.2 and 0.4, with the exception of
SFR–DM.
To conclude this section, we wish to comment on the dynamics of volatility, once

skewness and kurtosis have been modeled. Inspection of the parameters b+0 and b−0
reveals for all stock-index and exchange-rate series great stability for the estimates and
their standard errors. These inspections con5rm the observation of Harvey and Siddique
(1999) that the asymmetries at the level of volatility are not altered as higher moments
get speci5ed.

4.4. Testing the adequacy of the model

To assess the quality of the estimates, we present in Table 5 an analysis of orthog-
onality conditions that should be satis5ed by the residuals. The use of orthogonality
conditions to test the speci5cation of a model has been advocated by Newey (1985)
and can be found in many subsequent contributions, e.g., Harvey and Siddique (1999).
We group these orthogonality conditions in order to focus on the dependency of higher
moments.

E[zt] = 0; E[z2t − 1] = 0; E[z3t ] = 0; E[z4t ]− 3 = 0; (14)

E[(z2t − 1)(z2t−j − 1)] = 0; j = 1; : : : ; 4; (15)

E[(z3t )(z
3
t−j)] = 0; j = 1; : : : ; 4; (16)

E[(z4t − 3)(z4t−j − 3)] = 0; j = 1; : : : ; 4: (17)

Hansen (1982) shows how theses conditions can get tested. It is possible to test each
condition individually or it is possible to test the various groups with a Wald test. For
brevity, we present the means associated with conditions (14) and associated standard
errors. We also present Wald tests for joint signi5cance of higher moments given by
conditions (15)–(17). The results of these estimations are presented in Table 5.
In the 5rst two rows of Table 5, we present measures of skewness and excess

kurtosis. We notice for excess kurtosis (de5ned as kurtosis-3) a strong reduction when
compared with the values presented for the raw data in Table 2. Inspection of the test
for the 5rst two unconditional moments shows that we cannot reject the null hypothesis
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Table 6
Existence of skewness and kurtosis. We count for each series how often skewness and kurtosis cease to
exist, i.e. �t 6 3, respectively, �t 6 4.

S&P500 FTSE DAX CAC NIK

No skewness 53 0 0 0 19
Percentage of sample 0.74% 0.00% 0.00% 0.00% 0.27%
No kurtosis 312 0 0 0 501
Percentage of sample 4.36% 0.00% 0.00% 0.00% 6.98%

DM–US YEN–US UK–US FF–US SFR–DM CAN–US

No skewness 5 5 9 5 0 1
Percentage of sample 0.25% 0.25% 0.46% 0.25% 0.00% 0.05%
No kurtosis 27 50 31 25 1 8
Percentage of sample 1.37% 2.54% 1.57% 1.27% 0.05% 0.41%

that residuals have a zero mean and a unit variance for any series. A test of joint nullity
of skewness and excess kurtosis gets rejected in many cases. One could expect these
rejections to occur, since it is precisely higher moments that we wish to capture in this
study. Noticeable exceptions are the S&P where only the third moment, with a value
of −0:323 is marginally signi5cant. For the CAC, the third and fourth moments are
such that the hypothesis of normally distributed residuals cannot be rejected.
We now turn to the Wald tests of joint signi5cance in the orthogonality condi-

tions presented in Eqs. (15)–(17). The statistic Q3 corresponds to a joint test for
heteroskedasticity. The p-values show that we cannot reject homoskedasticity for all
series with the exception of the Yen–US exchange rate. The statistics Q4 and Q5 test
for dependency of the third, respectively, the fourth moment. Only for the CAC and
the Nikkei can we reject independence of the third moment. Rejection of independence
of kurtosis occurs for nearly all exchange rates. We marginally reject for the FTSE.

5. Analysis of the dynamics of skewness and kurtosis

In the previous section, we estimated the dynamics of parameters �t and �t . Even
though these parameters are related to skewness and kurtosis, the relation is a highly
non-linear one. For this reason, in order to proceed one step further, we now consider
the evolution of skewness and kurtosis through time, using Eqs. (2) and (3). Next, we
analyze cross-sectional movements between various markets in terms of skewness as
well as kurtosis. Our model, therefore, extends in a certain sense the one by Kroner
and Ng (1998).

5.1. Existence of moments

We consider now the existence of conditional skewness and kurtosis in actual data.
Inspection of formulae (2) and (3) suggests that third and fourth moments of inno-
vations will only exist for �t ¿ 3 and �t ¿ 4, respectively. Table 6 reports, for each
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Fig. 6.

series, the number of times that �t6 3 or 3¡�t6 4. In the former case, skewness
and kurtosis do not exist, whereas in the latter case, only kurtosis fails to exist. Inspec-
tion of this table shows that for stock markets, the percentage of days when skewness
did not exist ranges between 0.74% for the S&P to 0.27% for the Nikkei. The cor-
responding percentages for kurtosis range between 4.36% for the S&P and 6.98% for
the Nikkei. This 5nding suggests that the conclusion reached by Loretan and Phillips
(1994) that the fourth unconditional moment of stock-index returns fails to exist is due
to some episodes where higher moments cease to exist.
For exchange rates, we notice that the number of days when skewness or kurtosis

fails to exist is much smaller.

5.2. Persistence of skewness and kurtosis

As an illustration, we display in Figs. 6 and 7 the raw returns, the volatility, �t ,
the conditional skewness, st , and the conditional kurtosis, kt , of the residuals of our
model for the S&P and the FTSE, respectively. Notice that s and k are computed
with formulae (2) and (3). Since skewness only exists if �t ¿ 3, we mark days where
this condition fails with a star. Similarly, kurtosis exists only if �t ¿ 4. Again, dates
where this fails are marked with a star. We would like to mention that if �t approaches
4, the kurtosis exists, yet may take very large values. Inspection of these conditional
evolutions with the raw returns series shows that extreme realizations are rather well
captured by our model.
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Fig. 7.

The average kurtosis, for those days where kurtosis exists is 7.66. This value should
be compared with the one of 6.056 that we presented in Table 5, corresponding to
the kurtosis of standardized residuals. Even though kurtosis seems strongly varying,
its average value seems very reasonable. Careful inspection of the 5gures of skewness
and kurtosis shows evidence for persistence of skewness and kurtosis.
To gain further insight on persistence in third and fourth moments, Table 7 reports

transition probability matrices of skewness and kurtosis for selected series. The foreign-
exchange series tend to have very similar dynamics, for this reason, we only present the
results for the UK–US exchange rate. To construct the transition probability matrices,
we rank the value of a higher moment into one of four possible categories. First, entries
with 5nite values were classi5ed into four intervals corresponding to the quartiles
(Ij; j = 1; : : : ; 4). Second, entries with in5nite values were counted in interval 4. The
element in row a and column b of a transition probability matrix, (a; b), measures the
percentage of times that a series moves from a skewness (or kurtosis) in quartile a at
time t − 1 to quartile b at time t. Consideration of transition probabilities circumvents
some drawbacks of serial-correlation coeIcients in the presence of outliers. 14 In the
absence of autocorrelation, each element of the transition matrix would have the same
value (1=16 = 6:25%). In case of a positive correlation, elements along the principal
diagonal are larger than o9-diagonal elements.

14 This is a well-known problem. The correlation coeIcient can be biased, if two extreme values occur at
two consecutive dates. With transition matrices, outliers cannot bias correlation measures, since they only
appear as elements of an interval.
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Table 7
Transition probabilites for skewness and kurtosis. It(j) designs the interval to which skewness, respectively,
kurtosis belongs at time t. The intervals I(j) for j = 1; : : : ; 4, correspond to the four quartiles starting with
the smallest. The interval j = 4 also contains those situations where skewness or kurtosis does not exist
(�t 6 3, respectively, �t 6 4). An element in row a and column b of each matrix measures the percentage
of times one moves from a skewness or kurtosis in the quartile a to a quartile b.

Skewness Kurtosis

I(1) I(2) I(3) I(4) I(1) I(2) I(3) I(4)

S&P S&P
I−1(1) 16.63 5.66 1.47 1.03 I−1(1) 15.21 3.55 2.92 2.25
I−1(2) 5.34 10.84 5.89 2.75 I−1(2) 8.69 8.18 3.88 3.18
I−1(3) 2.08 6.44 10.41 5.89 I−1(3) 0.01 12.01 6.69 5.21
I−1(4) 0.75 1.89 7.04 15.88 I−1(4) 0.00 0.20 10.45 17.56

FTSE FTSE
I−1(1) 18.23 5.66 0.88 0.22 I−1(1) 16.27 6.91 1.62 0.20
I−1(2) 5.50 12.26 6.20 1.03 I−1(2) 6.83 10.87 6.02 1.28
I−1(3) 1.12 6.09 11.90 5.89 I−1(3) 1.54 6.30 11.62 5.54
I−1(4) 0.15 0.99 6.02 17.84 I−1(4) 0.35 0.92 5.74 17.97

DAX DAX
I−1(1) 16.30 5.96 2.18 0.54 I−1(1) 11.03 8.20 4.40 1.37
I−1(2) 6.41 10.60 5.89 2.10 I−1(2) 8.13 8.37 6.27 2.23
I−1(3) 1.80 6.30 10.34 6.56 I−1(3) 4.15 6.09 8.63 6.13
I−1(4) 0.49 2.14 6.58 15.80 I−1(4) 1.68 2.35 5.70 15.27

NIK NIK
I−1(1) 7.75 4.90 5.03 7.23 I−1(1) 7.03 4.75 3.62 7.88
I−1(2) 6.03 7.49 6.48 5.17 I−1(2) 5.87 8.53 5.42 7.00
I−1(3) 5.14 6.76 7.36 5.45 I−1(3) 3.90 5.75 4.87 5.24
I−1(4) 6.01 6.02 5.82 7.35 I−1(4) 6.49 7.78 5.84 10.03

UK–US UK–US
I−1(1) 18.02 5.03 1.73 0.20 I−1(1) 12.13 7.72 4.11 1.02
I−1(2) 4.87 12.18 6.50 1.47 I−1(2) 8.32 9.29 5.58 1.78
I−1(3) 1.83 6.45 11.88 4.77 I−1(3) 3.60 6.40 9.14 5.84
I−1(4) 0.25 1.32 4.87 18.58 I−1(4) 0.86 1.62 6.14 16.40

DM–US DM–US
I−1(1) 13.30 6.95 3.50 1.22 I−1(1) 8.68 8.53 5.38 2.34
I−1(2) 7.16 7.82 6.90 3.15 I−1(2) 8.43 7.41 5.84 3.35
I−1(3) 3.50 7.06 8.43 5.99 I−1(3) 5.53 5.63 6.85 6.95
I−1(4) 1.02 3.20 6.09 14.67 I−1(4) 2.28 3.45 6.90 12.39

YEN–US YEN–US
I−1(1) 9.80 6.04 4.82 4.31 I−1(1) 6.35 6.85 6.75 4.97
I−1(2) 6.70 6.14 7.01 5.18 I−1(2) 6.65 6.85 6.45 5.08
I−1(3) 4.87 6.85 6.60 6.65 I−1(3) 6.85 6.19 6.19 5.74
I−1(4) 3.60 5.99 6.50 8.88 I−1(4) 5.13 5.08 5.58 9.24
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We 5rst consider transition matrices for skewness (left part of Table 7). In most
cases, we obtain a positive relation between st−1 and st . For instance, if we consider
the S&P, we notice that with 16.63% probability, skewness stays in the 5rst quartile.
The probability of moving from the 5rst quartile to the second, third and fourth quartile
is 5.66%, 1.47%, and 1.03% respectively. It is possible to summarize the persistence
of a given moment by summing the diagonal elements of the matrix. If there was no
persistence of a given moment, each diagonal should sum up to 25%. For the various
series displayed in Table 7 we obtain 53.76% (S&P), 60.22% (FTSE), 53.03% (DAX),
29.94% (NIK), and eventually 60.66% for the UK–US. This shows that a given level
of skewness tends to be followed by a similar level of skewness. Note that, for the
CAC, since there is no dynamic of �t and �t , skewness and kurtosis are constant over
time.
Now, we turn to the persistence of kurtosis presented in the right part of Table 8.
Persistence tends to be somewhat weaker for kurtosis than for skewness. The sum

of diagonal elements is 47.64% (S&P), 56.73% (FTSE), 43.30% (DAX) and 46.95%
(UK–US). For the Nikkei, the transition probability matrix is dominated by the (4,
4) element corresponding to all those days when kurtosis failed to exist for that
market.
This investigation shows that there is evidence of persistence in skewness but much

less so for kurtosis.

5.3. Cross-index variability of higher moments

An abundant literature has documented volatility comovements (see, e.g., Hamao,
et al., 1990; or Susmel and Engle, 1994, for stock markets). More recently, some
authors stated that correlation between markets may increase during periods of high
volatility (Longin and Solnik, 1995; Ramchand and Susmel, 1998). Now, we wish to
address the issue of comovements between markets in terms of skewness and kurtosis. If
skewness varies jointly between two markets this suggests an increase in the probability
of occurrence of a large event with the same sign on both markets. If kurtosis varies
jointly, then there will be an increase in the probability of occurrence of a large event
on both markets, whatever the direction of the shock.
To measure the correlation between joint realizations of skewness or kurtosis for

pairs of series, we construct frequency matrices. These matrices are constructed in
the following manner. We consider four intervals. First, we classify all realizations
where �t ¡ 3 (�t ¡ 4), i.e., where skewness (respectively kurtosis) does not exist, as
belonging to the fourth interval, I4. All other realizations get then classi5ed according
to the quartile to which they belong. The fourth interval, therefore, contains those
observations where either skewness or kurtosis did not exist or belonged to the upper
quartile. The left part of Table 8 contains the frequency matrices of joint realizations of
skewness for a series a and a series b. The right part contains the kurtosis matrices. To
illustrate, the element of the 5rst matrix, 6.33 indicates that 6.33% of all realizations
were such that the skewness of the S&P belonged to the second quartile whereas,
simultaneously, the FTSE had a skewness in the 5rst quartile.
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Table 8
Joint skewness and joint kurtosis classi5cation. I(j) designs the interval to which skewness or kurtosis of
a given series belongs. The intervals I(j) for j = 1; : : : ; 4, correspond to the four quartiles starting with the
smallest. Interval I(4) also contains those cases where skewness, respectively kurtosis, does not exist. An
element in row a and column b of each matrix measures the percentage of times one observes a skewness
(kurtosis) in quartile a for the 5rst mentioned country and a skewness (kurtosis) in quartile b for the second
mentioned country.

Joint skewness Joint kurtosis

Ib(1) Ib(2) Ib(3) Ib(4) Ib(1) Ib(2) Ib(3) Ib(4)

SP and FTSE SP and FTSE
Ia(1) 11.30 6.09 4.60 2.82 Ia(1) 4.22 5.81 7.12 6.77
Ia(2) 6.33 7.60 6.51 4.39 Ia(2) 5.13 5.85 6.13 6.83
Ia(3) 4.18 6.34 7.37 6.93 Ia(3) 6.12 6.49 5.75 5.57
Ia(4) 3.20 4.97 6.52 10.87 Ia(4) 9.54 6.84 5.99 5.82

SP and DAX SP and DAX
Ia(1) 10.36 6.16 4.75 3.53 Ia(1) 5.17 6.19 6.51 6.06
Ia(2) 6.24 7.44 6.03 5.10 Ia(2) 6.06 5.52 5.98 6.38
Ia(3) 4.51 5.82 7.54 6.94 Ia(3) 6.40 6.23 5.70 5.61
Ia(4) 3.88 5.57 6.68 9.43 Ia(4) 7.37 7.07 6.82 6.94

SP and NIK SP and NIK
Ia(1) 8.39 6.62 5.28 4.51 Ia(1) 6.23 7.11 4.57 6.02
Ia(2) 6.47 6.26 6.06 6.03 Ia(2) 5.91 6.55 5.06 6.42
Ia(3) 5.21 6.33 6.61 6.68 Ia(3) 5.60 6.44 4.83 7.07
Ia(4) 4.86 5.96 6.76 7.97 Ia(4) 5.54 6.72 5.31 10.63

DM–US and YEN–US DM–US and YEN–US
Ia(1) 12.34 7.06 3.81 1.78 Ia(1) 7.46 6.80 6.29 4.42
Ia(2) 6.14 7.51 6.65 4.72 Ia(2) 7.31 7.01 5.99 4.72
Ia(3) 3.81 6.14 8.22 6.80 Ia(3) 6.60 6.70 6.35 5.33
Ia(4) 2.69 4.31 6.29 11.73 Ia(4) 3.60 4.52 6.35 10.56

DM–US and UK–US DM–US and UK–US
Ia(1) 13.76 6.80 2.89 1.52 Ia(1) 4.97 6.95 7.31 5.74
Ia(2) 6.85 8.27 6.19 3.71 Ia(2) 6.70 6.29 6.50 5.53
Ia(3) 3.71 6.90 8.73 5.63 Ia(3) 7.06 7.06 5.13 5.74
Ia(4) 0.66 3.05 7.16 14.16 Ia(4) 6.24 4.72 6.04 8.02

DM–US and FF–US DM–US and FF-US
Ia(1) 22.34 2.44 0.20 0.00 Ia(1) 19.59 4.72 0.56 0.10
Ia(2) 2.54 18.53 3.65 0.30 Ia(2) 4.72 16.09 4.01 0.20
Ia(3) 0.05 3.96 18.38 2.59 Ia(3) 0.56 4.01 17.77 2.64
Ia(4) 0.05 0.10 2.74 22.13 Ia(4) 0.10 0.20 2.64 22.08

Again, inspection of the sum of the diagonals is indicative of the correlation of
the two series of skewness or kurtosis. For skewness, we obtain the following sums:
37.14% (S&P=FTSE), 34.78% (S&P=DAX), 29.23% (S&P=NIK), 44.92% (DM–US=
UK–US), 81.37% (DM–US=FF–US), and 36.80% (DM–US=Yen–US). Similarly, we
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obtain for kurtosis the sums: 21.65% (S&P=FTSE), 23.32% (S&P=DAX), 28.24%
(S&P=NIK), 24.42% (DM–US=UK–US), 75.53% (DM–US=FF–US), and 31.37% (DM–
US=Yen–US). These numbers show that, for most series considered, the 5gures are
larger than 25%, the value which would hold if there was no correlation. The fact that
the elements (1; 1) and (4; 4) of the matrices take particularly large values suggests that
large returns with the same sign tend to occur jointly. The link between joint large
realizations is particularly strong for the S&P=FTSE pair, both at the level of skewness
and kurtosis.
Therefore, once again, our results indicate that comovements of moments beyond

volatility are more intensive during agitated periods. Comovements of volatility have
been pointed out by Longin and Solnik (1995) and Ramchand and Susmel (1998).
To illustrate this section, we display in Fig. 8 scatterplots of skewness and kurtosis

for the DM–US and FF–US pair, for which correlation is particularly strong between
higher moments. Inspection of the 5gure shows that the relation is clearly positive.
In the absence of outliers, the estimation of the correlation coeIcient is not biased.
Therefore, we regress the DM–US moment on the corresponding FF–US moment. We
5nd a parameter estimate of 1.118 (with standard error of 0.010) for skewness and
0.921 (with standard error of 0.011) for kurtosis. Adjusted R2 are as high as 0.87 and
0.77, respectively.
In this section, we have shown that there is evidence that large events generating

skewness tend to occur simultaneously for stock markets.

6. Conclusion

In this work, we implement a GARCH-type model where innovations are modeled
according to Hansen’s (1994) generalized Student-t distribution and where skewness
and kurtosis are time dependent.
We discuss, from a theoretical perspective, various possible speci5cations. Eventu-

ally, we settle for a speci5cation where the asymmetry and the fat-tailedness parameter
have an autoregressive structure. The parameters get mapped into the domain where
the density is well de5ned with a logistic map. Experiments with this speci5cation
revealed great numerical instability in the estimation. For certain series, the program
would converge to di9erent values for di9erent initial values. Also the coeIcient of
the lagged parameters turned out to be often ill behaved. For one set of initial val-
ues, it would converge to a value such as 0.9 and appear statistically signi5cant. In
another run, it would take the value −0:8 and still be statistically signi5cant. This dif-
5culty led us to devise an estimation strategy that takes care of the 5nding of spurious
persistence.
We also show, from a theoretical point of view, how our model can be simulated.

In a Monte-Carlo experiment, we verify the validity of our interpretation of the 5nding
of spurious persistence in higher moments. This Monte-Carlo simulation also allows
us to establish normality of the parameters in well speci5ed models.
The model is run over a large number of series. We 5nd for many series that skew-

ness and kurtosis are persistent. Furthermore, the modeling of skewness and kurtosis
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Fig. 8.
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does not a9ect the dynamics of volatility, an observation which con5rms Harvey and
Siddique (1999).
Turning to cross-sectional skewness and kurtosis, we document that higher moments

of stock-index and foreign-exchange returns are strongly related. We show that very
large events of a given sign tend to occur jointly. In particular, this result indicates
that crashes will tend to happen at the same time.
The model is presently univariate. As such it could be of value for option pricing, for

stress testing, and for Value at Risk measurements. Also in cases, where Monte-Carlo
simulations are required, our model can be used, since we show how to generate returns
with time varying volatility, skewness and kurtosis.
In Rockinger and Jondeau (2001) we develop a multivariate framework. The way

we obtain the multivariate density is by using copula functions that allow us to connect
univariate models of the kind developed in this paper (see, for instance, Nelsen, 1999).
This multivariate framework can be of value to test asset pricing models involving
higher moments. For instance, in Rubinstein (1973), one needs to estimate comoments.
The nth conditional comoment between some asset i, with return ri, and the market
portfolio with return r0 is de5ned as

Et[(ri − Et[ri])(r0 − Et[r0])n−1]; n¿ 2:

If n=2 (n=3) we obtain coskewness (respectively cokurtosis) with the market return.
The authors’ present work focuses on a model where the comoments are computed
using a numerical integration.∫

(ri − Et[ri])(r0 − Et[r0])n−1ft(ri; r0) dri dr0:

The density is modeled with a time-varying copula whereas the marginal distribution
of returns is modeled using the framework developed in this study.
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Appendix A

In this appendix, we derive a certain number of theoretical results concerning
Hansen’s (1994) generalized t distribution. We will extensively use the following result
of Gradshteyn and Ryzhik (1994, p. 341, 3.241.4):∫ ∞

0
x�−1(p + qx.)−(n+1) dx =

1
.pn+1

(
p
q

)�=. �(�=.)�(1 + n− (�=.))
�(1 + n)

de5ned for 0¡�=.¡n + 1; p 	=0; and q 	=0, where � is the gamma function for
which �(x)= (x− 1)�(x− 1) and �(1=2)=

√

. We 5rst use this lemma to verify that

expression (1), given in the text, truly de5nes a density.
The starting point is the conventional Student-t distribution with � degrees of freedom

de5ned by

f(x|�) = c
(
1 +

x2

�− 2

)−(�+1)=2

; x∈R:

The constant c has to be set in such a manner that the probability mass integrates to 1.
This requires that∫

x∈R

f(x|�) dx = c
∫ 0

−∞

(
1 +

x2

�− 2

)−(�+1)=2

dx

+ c
∫ ∞

0

(
1 +

x2

�− 2

)−(�+1)=2

dx = 1:

A change of variable in the left central integral, from x into −x, shows that the two
integrals in the center are equal. A straightforward application of the lemma yields the
well-known result that

c =
�((�+ 1)=2)√

(�− 2)�(�=2)

:

We assume now that X follows a conventional Student-t distribution with � d.o.f. In
order to introduce an asymmetry, Hansen considers the new random variable

Y =

{
(1− �)X if X 6 0;

(1 + �)X if X ¿ 0

with candidate density

gt(y|�; �) =




c

(
1 +

1
�− 2

(
y

1− �

)2)−(�+1)=2

if y6 0;

c

(
1 +

1
�− 2

(
y

1 + �

)2)−(�+1)=2

if y¿ 0:
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Straightforward computations show that the constant c is the same as for the
conventional Student-t distribution. The 5rst moment of Y is given by

a ≡ E[Y ] = c
∫ 0

−∞
y

(
1 +

1
�− 2

(
y

1− �

)2)−(�+1)=2

dy

+c
∫ ∞

0
y

(
1 +

1
�− 2

(
y

1 + �

)2)−(�+1)=2

dy

= I 1l + I 1r :

We perform the change of variables y=(1−�)x and (1+�)x in the two integrals and
apply the lemma to obtain

I 1l = c(1−�)2
∫ 0

−∞
x
(
1 +

x2

�−2

)−(�+1)=2

dx = − c
2
(1−�)2(�− 2)

�((�−1)=2)
�((�+1)=2)

= − c
2
(1− �)2

�− 2
�− 1

:

Similarly I 1r = c=2(1 + �)2(� − 2)=(� − 1) = −(1 + �)2=(1 − �)2I 1l . Combination and
simpli5cation of the various terms yield the mean

a ≡ 4�c
�− 2
�− 1

:

The second moment of Y follows using similar computations: m2 ≡ E[Y 2] = I 2l + I 2r .
The same change of variables as previously yields

I 2l =
c
2
(1− �)3(�− 2)3=2

�
(
3
2

)
�((�− 2)=2)

�((�+ 1)=2)
=

(1− �)3

2
:

Also I 2r = (1 + �)3=(1− �)3I 2l . After several simpli5cations, we get

m2 = E[Y 2] = 1 + 3�2:

Since V [Y ] = E[Y 2]− (E[Y ])2, we obtain for the variance b2 ≡ V [Y ] = 1 + 3�2 − a2.
Since the residuals of the GARCH model are assumed to have zero mean and unit

variance, we introduce the random variable Z = (Y − a)=b which will be centered, i.e.,
with mean 0, and reduced, i.e., with variance 1. The passage from Y to Z will not
change the constant c, it is only necessary to multiply the density by the Jacobian of
the transformation, that is b. The density of Z follows by replacing Y with bZ +a and
is displayed in formula (1) of the text.
These computations verify Hansen’s. Our model involves, however, higher order

moments that we compute now. The third moment of Y is given by m3 ≡ E[Y 3]=I 3l +I 3r :
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The same change of variables as previously yields

I 3l =− c
2
(1− �)4(�− 2)2

�(2)�((�− 3)=2)
�((�+ 1)=2)

=−2c
(1− �)4(�− 2)2

(�− 1)(�− 3)
;

where the 5rst equality follows from a straightforward application of the lemma. The
second equality follows from simple algebra. Also, I 3r =−(1+�)4=(1−�)4I 3l : Eventually,
we obtain

m3 = 16c�(1 + �2)
(�− 2)2

(�− 1)(�− 3)

de5ned for �¿ 3. The third moment of Z may be obtained as a function of the various
moments of Y . We obtain

E[Z3] = (E[Y 3]− 3aE[Y 2] + 2a3)=b3:

We now turn to the computation of the last moment of interest for this paper. A
generalization for even higher moments can be easily obtained. The fourth moment
may again be written as the sum of integrals: m4 = E[Z4] = I 4l + I 4r :

We have

I 4l =
c
2
(1− �)5(�− 2)

5
2

�
(
5
2

)
�((�− 4)=2)

�((�+ 1)=2)
=

3
2
(1− �)5

�− 2
�− 4

:

The various steps involved in the computation use the same techniques as previously.
The 5rst equality follows from the lemma and the second one from simple algebra.
Also, it can be shown that I 4r = (1 + �)5=(1− �)5I 4l . Regrouping terms, we obtain

m4 = 3
�− 2
�− 4

(1 + 10�2 + 5�4)

de5ned for �¿ 4. We also obtain the associated moment of Z as

E[Z4] = (E[Y 4]− 4aE[Y 3] + 6a2E[Y 2]− 3a4)=b4:

We veri5ed these formulae and their numerical implementation by computing the
various moments via numerical integration of a generalized t distribution.

Appendix B

In the following, we present the computations of the gradient of the log-likelihood.
To simplify notations, we focus on the gradient of a single observation. Summation of
these gradients yields the sample gradients. We de5ne d= (by=�+ a)=(1− �s), where
s is a sign dummy taking the value of 1 if by=� + a¡ 0 and −1 otherwise. We also
de5ne v1 = 1 + d2=(�− 2). We recall that the log-likelihood of an observation is

l= ln(b) + ln(c)− ln(�)− �+ 1
2

ln(v1):

To obtain the gradients, we decompose the problem and make frequent use of the chain
rule of di9erentiation. A necessary ingredient to obtain the gradients is

@l
@�

=− 1
�
+

�+ 1
2

1
v1

2d
�− 2

by
(1− �s)�2 :
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Next, to obtain @l=@�, we note that

@a
@�

= 4c(�− 2)=(�− 1);

@b
@�

= (3� − a @a=@�)=b;

@d
@�

=
(

@b
@�

y
�
+

@a
@�

)
(1− �s)−1 + s(by=� + a)(1− �s)−2;

@v1
@�

=
2d

�− 2
@d
@�

;

so that

@l
@�

=
1
b
@b
@�

− �+ 1
2

1
v1

@v1
@�

:

To obtain @l=@�, we proceed similarly. We notice that @c=@�= c@ ln(c)=@� and

@ ln(c)
@�

=
1
2
5
(

�+ 1
2

)
− 1

2
1

�− 2
− 1

2
5
(�
2

)
;

@a
@�

= 4�(�− 2)(�− 1)−1 @c
@�

+ 4�c[(�− 1)−1 − (�− 2)(�− 1)−2];

@b
@�

=−a
b
@a
@�

;

@d
@�

=
(

@b
@�

y
�
+

@a
@�

)
(1− �s);

@v1
@�

=−(�− 2)−2d2 + 2(�− 2)−1d
@d
@�

;

so that

@lt
@�

=
1
b
@b
@�

+
@ ln(c)

@�
− 3

2
ln(v1)(�+ 1)

1
v1

@v1
@�

;

where 5(·) is the derivative of the log of the gamma function. This derivative is
known as the di-gamma function, which may be implemented with desired accuracy.
The Fortran library IMSL also implements this function.
The passage from �t to �̃t and from �t to �̃t involves the logistic transform. The

computation of @�t=@�̃t and of @�t=@�̃t is therefore trivial. For a GARCH speci5cation
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of volatility with �2
t = a0 + b0y2

t−1 + c0�2
t−1 we obtain

@lt
@a0

=
@lt
@�

(
1 + c0

@ht−1

@a0

)
;

@lt
@b0

=
@lt
@�

1
2�

(
y2

t−1 + c0
@ht−1

@b0

)
;

@lt
@c0

=
@lt
@�

1
2�

(
ht−1 + c0

@ht−1

@c0

)
;

@h1
@a0

= 1 + c0
@h0
@a0

= 1;
@h2
@a0

= 1 + c0:

For the speci5cation �̃
2
t = a2 + b2y2

t−1 + c2�̃
2
t−1, we obtain

@lt
@a2

=
@lt
@�t

@�t

@�̃t
;

@lt
@b2

=
@lt
@�t

@�t

@�̃t
yt−1;

@lt
@c2

=
@lt
@�t

@�t

@�̃t

(
�̃t + c2

@�̃t−1

@c2

)
:

These equations may be computed recursively, starting from @�̃t−1=@c2 = 0.

Appendix C

In this appendix, we report on a simulation experiment that we performed to assess
the quality of the estimates. We 5rst discuss the main model to be simulated and then
present our conclusions.
For the reader’s convenience, we present again the general model that we simulate

and estimate:

rt = yt;

yt = �tzt ;

�2
t = a0 + b+0 (y

+
t−1)

2 + b−0 (y
−
t−1)

2 + c0�2
t−1;

zt ∼GT (zt |�t ; �t);

�̃t = a1 + b+1 y+
t−1 + b−1 y−

t−1 + c1�̃t−1;

�̃t = a2 + b2y2
t−1 + c2�̃t−1;

�t = g]2;+30](�̃t); �t = g]−1;1[(�̃t):

We have already presented in the main text how to generate numbers that are
distributed as the generalized Student-t.
The 5rst issue that we examine concerns the properties of the estimates obtained

when the model is well speci5ed. To address this issue we simulated 1,000 samples
of size 5,000, where we set b+1 = b−1 = c1 = 0 and the other parameters were set as
indicated in column 1 of Table 9. Out of these 1,000 simulations, we found that in
11.29% of the cases the algorithm could not converge with a relative gradient smaller
than 10−6. In another run with a precision of 10−4, we always obtained convergence.
On average, it took us 192 s before convergence was reached. The simulations and
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Table 9
Results of Monte-carlo Experiments. Column 1 and 5 present the parameters used in a simulation corre-
sponding to a model such as the one described in Table 3. We simulated 1,000 sample of size 5,000

Experiment 1 Experiment 2

Average Standard Average Standard
True Average standard error True Average standard error

parameter estimate error estimate parameter estimate error estimate
1 2 3 4 5 6 7 8

a0 0.05 0.0932 0.0147 0.0160 0.05 0.0867 0.0165 0.0171
b+0 0.03 0.0372 0.0075 0.0076 0.03 0.0484 0.0096 0.0095
b−0 0.07 0.0949 0.0095 0.0081 0.07 0.1125 0.0127 0.0124
c0 0.90 0.9060 0.0088 0.0085 0.90 0.8973 0.0107 0.0109
a1 −1.00 −1.0035 0.2091 0.2448 −1.00 −0.9778 0.2203 0.2119
a2 −0.02 −0.0296 0.0098 0.0125 −0.02 −0.0117 0.0286 0.0311
b2 0.15 0.1395 0.0179 0.0196 0.00 −0.0006 0.0165 0.0227
c2 0.80 0.7956 0.0294 0.0342 0.00 0.3977 0.2536 0.5214

associated estimations yield, for each parameter and its standard error, a sample of
1,000 observations, for which one can comment descriptive statistics.
Column 2 of Table 9 presents the average parameter estimates. We notice that a1

and the dynamic of �̃t is very well estimated. Inspection of the parameters b+0 and b−0
in the volatility equation reveals that the estimate of b−0 is slightly too high.

Next, we turn to the quality of the standard errors. Here we report standard errors
obtained using the “sandwich method”, i.e., using I−1JI−1 where I is the information
matrix and J the matrix of outer products. We compare the average of the computed
standard errors (see column 3) with the standard deviation of the estimated parameters
(see column 4). We notice (with relief) that our standard errors seem to correspond to
the actual measure. Inspection of the histogram of the parameter estimates displayed a
normal distribution.
Even though we did not attempt a formal proof, these observations led us to conjec-

ture that if the model is well speci5ed, the likelihood estimates are distributed asymp-
totically normal.
The next experiment on which we wish to report concerns the degeneracy, mentioned

in the main text, when b2 =0, yet where one estimates a model with autoregressive �̃t :
To assess this situation, we performed another experiment where we set a2=−0:02; b2=
c2 = 0. We estimated a model with autoregressive dynamic for �̃t .
In column 6, we present the average of the estimated parameters. Concerning the

parameters of interest, we 5nd that b2 is estimated well, whereas there is a bias for the
parameter c2. The average is 0.398. Even though the standard deviation of the parameter
is huge (0.521), we 5nd that, in 58.75% of the simulations, one would have rejected the
null hypothesis that c2 =0 at the 5% signi5cance level. This 5nding demonstrates that,
if the parameter corresponding to lagged innovations in an autoregressive speci5cation
is not signi5cant, the interpretation of a signi5cant autoregressive parameter should be
done with great care.
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